Mechanical Regularization of Optical Flow: General Framework Using Finite-Elements

نویسندگان

  • Petr Jordan
  • Todd E. Zickler
  • Simona Socrate
  • Robert D. Howe
چکیده

We present a general framework for regularization of optical flow by mechanical finite-element models derived from the theory of continuum mechanics. We enforce image-based local motion estimates as lumped body forces applied at mesh nodes of an underlying mechanical model. The lumped body forces are formulated as virtual springs displaced by local motion estimates. The choice of each virtual spring stiffness reflects local textural quality and associated local motion confidence. In this formulation, the choice of image similarity measure, local search algorithm, image-mechanics confidence coupling, and material mechanics is application and user specific. Complex nonlinear viscoelastic materials can be used for regularization, as the modularity of the framework facilitates the use of commercially available finite-element solvers. Results from synthetic uniaxial deformation of liver parenchyma are provided and compared to traditional image-based regularizers. We demonstrate that knowledge of underlying material mechanics significantly improves motion estimates, even in situations where mechanical boundary conditions are not known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow

The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...

متن کامل

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

Efficient Nonlocal Regularization for Optical Flow

Dense optical flow estimation in images is a challenging problem because the algorithm must coordinate the estimated motion across large regions in the image, while avoiding inappropriate smoothing over motion boundaries. Recent works have advocated for the use of nonlocal regularization to model long-range correlations in the flow. However, incorporating nonlocal regularization into an energy ...

متن کامل

Mechanical Buckling Analysis of Composite Annular Sector Plate with Bean-Shaped Cut-Out using Three Dimensional Finite Element Method

In this paper, mechanical buckling analysis of composite annular sector plates with bean shape cut out is studied. Composite material sector plate made of Glass-Epoxy and Graphite-Epoxy with eight layers with same thickness but different fiber angles for each layer. Mechanical loading to form of uniform pressure loading in radial, environmental and biaxial directions is assumed. The method used...

متن کامل

Bending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements

This study presents the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. The Euler-Bernoulli beam is assumed to describe the kinematic relations and constitutive equations. Because of technical problems, particle size shapes and micro-voids are created during the fabrication which should be taken into consideration. Two porosity models are proposed. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006